Homedatasheet3D7110-5

3D7110-5 Datasheet

Monolithic 10-tap Fixed Delay Line
Share:
Manufacturer

Description

Features, Applications

FEATURES

All-silicon, low-power CMOS technology TTL/CMOS compatible inputs and outputs Vapor phase, IR and wave solderable Auto-insertable (DIP pkg.) Low ground bounce noise Leading- and trailing-edge accuracy Delay range:.75 through 80ns Delay tolerance: or 1ns Temperature stability: �3% typical (0C-70C) Vdd stability: �1% typical (4.75V-5.25V) Minimum input pulse width: 15% of total delay 14-pin Gull-Wing and 16-pin SOIC available as drop-in replacements for hybrid delay lines

(For mechanical data, see Case Dimensions document)

The 3D7110 10-Tap Delay Line product family consists of fixed-delay CMOS integrated circuits. Each package contains a single delay line, tapped and buffered at 10 points spaced uniformly in time. Tap-to-tap (incremental) delay values can range from 0.75ns through 8.0ns. The input is reproduced at the outputs without inversion, shifted in time as per the user-specified dash number. The 3D7110 is TTL- and CMOScompatible, capable of driving ten 74LS-type loads, and features both rising- and falling-edge accuracy. The all-CMOS 3D7110 integrated circuit has been designed as a reliable, economic alternative to hybrid TTL fixed delay lines. It is offered in a standard 14-pin auto-insertable DIP and space saving surface mount 14- and 16-pin SOIC packages.

O9 O10 VCC GND Delay Line Input Tap 1 Output (10%) Tap 2 Output (20%) Tap 3 Output (30%) Tap 4 Output (40%) Tap 5 Output (50%) Tap 6 Output (60%) Tap 7 Output (70%) Tap 8 Output (80%) Tap 9 Output (90%) Tap 10 Output (100%) +5 Volts Ground

* Total delay referenced to Tap1 output; � 1.0ns NOTE: Any dash number between.75 and 8 not shown is also available.

The 3D7110 ten-tap delay line architecture is shown in Figure 1. The delay line is composed of a number of delay cells connected in series. Each delay cell produces at its output a replica of the signal present at its input, shifted in time. The delay cells are matched and share the same compensation signals, which minimizes tap-totap delay deviations over temperature and supply voltage variations. To guarantee the Table 1 delay accuracy for input frequencies higher than the Maximum Operating Frequency, the 3D7110 must be tested at the user operating frequency. Therefore, to facilitate production and device identification, the part number will include a custom reference designator identifying the intended frequency of operation. The programmed delay accuracy of the device is guaranteed, therefore, only at the user specified input frequency. Small input frequency variation about the selected frequency will only marginally impact the programmed delay accuracy, if at all. Nevertheless, it is strongly recommended that the engineering staff at DATA DELAY DEVICES be consulted.

The Frequency and/or Pulse Width (high or low) of operation may adversely impact the specified delay accuracy of the particular device. The reasons for the dependency of the output delay accuracy on the input signal characteristics are varied and complex. Therefore a Maximum and an Absolute Maximum operating input frequency and a Minimum and an Absolute Minimum operating pulse width have been specified.

The Absolute Minimum Operating Pulse Width (high or low) specification, tabulated in Table 1, determines the smallest Pulse Width of the delay line input signal that can be reproduced, shifted in time at the device output, with acceptable pulse width distortion. The Minimum Operating Pulse Width (high or low) specification determines the smallest Pulse Width of the delay line input signal for which the output delay accuracy tabulated in Table 1 is guaranteed. To guarantee the Table 1 delay accuracy for input pulse width smaller than the Minimum Operating Pulse Width, the 3D7110 must be tested at the user operating pulse width. Therefore, to facilitate production and device identification, the part number will include O9 O10

The Absolute Maximum Operating Frequency specification, tabulated in Table 1, determines the highest frequency of the delay line input signal that can be reproduced, shifted in time at the device output, with acceptable duty cycle distortion. The Maximum Operating Frequency specification determines the highest frequency of the delay line input signal for which the output delay accuracy is guaranteed. O3 O4

custom reference designator identifying the intended frequency and duty cycle of operation. The programmed delay accuracy of the device is guaranteed, therefore, only for the user specified input characteristics. Small input pulse width variation about the selected pulse width will only marginally impact the programmed delay accuracy, if at all. Nevertheless, it is strongly recommended that the engineering staff at DATA DELAY DEVICES be consulted. circuitry to minimize the delay variations induced by fluctuations in power supply and/or temperature. The thermal coefficient is reduced to 600 PPM/C, which is equivalent to a variation , over the 0C-70C operating range, of �3% from the room-temperature delay settings and/or 1.0ns, whichever is greater. The power supply coefficient is reduced, over the 4.75V-5.25V operating range, �1% of the delay settings at the nominal 5.0VDC power supply and/or 1.5ns, whichever is greater. It is essential that the power supply pin be adequately bypassed and filtered. In addition, the power bus should of as low an impedance construction as possible. Power planes are preferred.

The delay of CMOS integrated circuits is strongly dependent on power supply and temperature. The monolithic 3D7110 programmable delay line utilizes novel and innovative compensation

PARAMETER DC Supply Voltage Input Pin Voltage Input Pin Current Storage Temperature Lead Temperature SYMBOL VDD VIN IIN TSTRG TLEAD MIN MAX 150 300 UNITS mA C NOTES

to 5.25V) PARAMETER Static Supply Current* High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current High Level Output Current Low Level Output Current Output Rise & Fall Time SYMBOL IDD VIH VIL IIH IIL IOH IOL & TF MIN MAX 30 UNITS mA ns NOTES

*IDD(Dynamic) 10 * CLD * VDD * F where: CLD = Average capacitance load/tap (pf) F = Input frequency (GHz)

Input Capacitance 10 pf typical Output Load Capacitance (CLD) 25 pf max

Features

Parameters

Download DataSheet PDF View and Download


Manufacturer information

Warm Hint

What HQEW.NET can offer here?
1. www.hqew.net/product-data provides numerous and various electronic part data-sheet and technology document here., if it can't be shown, Please feel free to ask us for it.
2. www.hqew.net/news provides the latest information of the semiconductor industry or the electronics industry for you.
3. www.hqew.net provides verified suppliers and numerous electronic components for your demand and business.
Any questions you can contact us by email cs@hqew.net.
related datasheet
Browse Alphabetically: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9
Contact Us

+86-755-83536845

One to One Customer Service

17190417227